单向链表,并不在标准规格之内。slist和list的主要差别是,前者的迭代器属于单向的,而后者是双向的。STL的习惯是,插入操作会将新元素插入于指定位置之前,而作为单向链表,slist只能从头找起。
节点结构
struct __slist_node_base{
__slist_node_base* next;
}
template<class T>
struct __slist_node:public __slist_node_base{
T data;
}
//在已知节点后面插入新节点
inline __slist_node_base* __slist_make_link(__slist_node_base* prev_node, __slist_node_base* new_node) {
new_node->next = prev_node->next;
prev_node->next = new_node;
return new_node;
}
inline size_t __slist_size(__slist_node_base* node){
size_t result = 0;
for(; node != 0; node = node->next){
result++;
}
return result;
}
迭代器
struct __slist_iterator_base{
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef forward_iterator_tag iterator_category;
__slist_node_base* node;
__slist_iterator_base(__slist_node_base* x) : node(x) {}
void incr() { node = node->next; }
bool operator==(const __slist_iterator_base& x) const {
return node == x.node;
}
bool operator==(const __slist_iterator_base& x) const {
return node != x.node;
}
};
template<class T, class Ref, class Ptr>
struct __slist_iterator : public __slist_iterator_base{
typedef __slist_iterator<T, T&, T*> iterator;
typedef __slist_iterator<T, const T&, const T*> const_iterator;
typedef __slist_iterator<T, Ref, Ptr> self;
typedef T value_type;
typedef Ptr pointer;
typedef Ref reference;
typedef __slist_node<T> list_node;
__slist_iterator(list_node* x) : __slist_iterator_base(x) {}
__slist_iterator() : __slist_iterator_base(0) {}
__slist_iterator(const iterator* x) : __slist_iterator_base(x.node) {}
reference operator*() const { return ((list_node*)node)->data; }
pointer operator->() const { return &(operator*()); }
self& operator++() {
incr();
return *this;
}
self operator++(int) {
self tmp = *this;
incr();
return tmp;
}
};
slist的实现
template<class T, class Alloc = alloc>
class slist{
private:
typedef __slist_node<T> list_node;
typedef __slist_node_base list_node_base;
typedef __slist_iterator_base iterator_base;
typedef simple_alloc<list_node, Alloc> list_node_allocator;
list_node_base head;
static list_node* create_node(const value_type& x){
list_node* node = list_node_allocator::allocate();
__STL_TRY{
construct(&node->data, x);
node->next = 0;
}
__STL_UNWIND(list_node_allocator::deallocate(node));
return node;
}
static void destory_node(list_node* node){
destory(&node->data);
list_node_allocator::deallocate(node);
}
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef __slist_iterator<T, T&, T*> iterator;
typedef __slist_iterator<T, const T&, const T*> const_iterator;
slist() { head.next = 0; }
~slist() { clear(); }
iterator begin() { return iterator((list_node*)head.next); }
iterator end() { return iterator(0); }
size_type size() const { return __slist_size(head.next); }
bool empty() const { return head.next == 0; }
void swap(slist& L){
list_node_base* tmp = head.next;
head.next = L.head.next;
L.head.next = tmp;
}
reference front() { return ((list_node*)head->next)->data; }
void push_front(const value_type& x){
__slist_make_link(&head, create_node(x));
}
void pop_front() {
list_node* node = (list_node*)head.next;
head.next = node-next;
destory_node(node);
}
};